skip to main content


Search for: All records

Creators/Authors contains: "Neider, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 22, 2024
  2. Abstract

    Runtime monitoring is commonly used to detect the violation of desired properties in safety critical cyber-physical systems by observing its executions. Bauer et al. introduced an influential framework for monitoring Linear Temporal Logic (LTL) properties based on a three-valued semantics for a finite execution: the formula is already satisfied by the given execution, it is already violated, or it is still undetermined, i.e., it can still be satisfied and violated by appropriate extensions of the given execution. However, a wide range of formulas are not monitorable under this approach, meaning that there are executions for which satisfaction and violation will always remain undetermined no matter how it is extended. In particular, Bauer et al. report that 44% of the formulas they consider in their experiments fall into this category. Recently, a robust semantics for LTL was introduced to capture different degrees by which a property can be violated. In this paper we introduce a robust semantics for finite strings and show its potential in monitoring: every formula considered by Bauer et al. is monitorable under our approach. Furthermore, we discuss which properties that come naturally in LTL monitoring—such as the realizability of all truth values—can be transferred to the robust setting. We show that LTL formulas with robust semantics can be monitored by deterministic automata, and provide tight bounds on the size of the constructed automaton. Lastly, we report on a prototype implementation and compare it to the LTL monitor of Bauer et al. on a sample of examples.

     
    more » « less
  3. null (Ed.)
    Runtime monitoring is commonly used to detect the violation of desired properties in safety critical cyber-physical systems by observing its executions. Bauer et al. introduced an influential framework for monitoring Linear Temporal Logic (LTL) properties based on a three-valued semantics: the formula is already satisfied by the given prefix, it is already violated, or it is still undetermined, i.e., it can still be satisfied and violated by appropriate extensions. However, a wide range of formulas are not monitorable under this approach, meaning that they have a prefix for which satisfaction and violation will always remain undetermined no matter how it is extended. In particular, Bauer et al. report that 44% of the formulas they consider in their experiments fall into this category. Recently, a robust semantics for LTL was introduced to capture different degrees by which a property can be violated. In this paper we introduce a robust semantics for finite strings and show its potential in monitoring: every formula considered by Bauer et al. is monitorable under our approach. Furthermore, we discuss which properties that come naturally in LTL monitoring — such as the realizability of all truth values — can be transferred to the robust setting. Lastly, we show that LTL formulas with robust semantics can be monitored by deterministic automata and report on a prototype implementation. 
    more » « less
  4. null (Ed.)
    Robust Linear Temporal Logic (rLTL) was crafted to incorporate the notion of robustness into Linear-time Temporal Logic (LTL) specifications. Technically, robustness was formalized in the logic rLTL via 5 different truth values and it led to an increase in the time complexity of the associated model checking problem. In general, model checking an rLTL formula relies on constructing a generalized Büchi automaton of size 5^|φ| where |φ| denotes the length of an rLTL formula φ. It was recently shown that the size of this automaton can be reduced to 3^|φ| (and even smaller) when the formulas to be model checked come from a fragment of rLTL. In this paper, we introduce Evrostos, the first tool for model checking formulas in this fragment. We also present several empirical studies, based on models and LTL formulas reported in the literature, confirming that rLTL model checking for the aforementioned fragment incurs in a time overhead that makes the verification of rLTL practical. 
    more » « less